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1 Problem

A seemingly trustworthy ex-carnival clown offers you a special lottery ticket.
The lottery ticket has 100 slots in which you must place all of the numbers
1-100. The trick is that you don’t know what order the numbers should go in,
and order matters.

“But wait!” The clown says. “You only need to get one number (or more) in
the right position in order to win! And for every winning $1 ticket, I’ll give
you $1.50. That’s an easy profit of 50 cents per winning ticket! I’ll even spot
you one million dollars so you can buy one million tickets (pre-filled completely
randomly)!”

Should you take the clown’s offer?

More formally: Suppose the numbers 1..N are ordered randomly in a list. What
are the chances that at least one number is equal to its position in the list?

Example List: 5, 2, 1, 4, 3 (in this list, 2 and 4 are equal to their position in the
list since they are the second and fourth elements in the list).

What does the probability converge to as N approaches infinity?
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2 Informal Solution using Probability

This is my slightly hand-wavy solution to the problem. It’s also the way that I
initially solved it. See section 3 for a more rigorous proof and a better explana-
tion of the details.

2.1 The Probability of a Winning Ticket

Consider tickets with n slots. Let wk represent the event that a winning ticket
has the number k in the correct slot. We want to know what the chances are of
any of the events occurring... i.e. the chances of any of the numbers being in
the correct slot. So we need to calculate the probability P (w1∪w2∪w3∪...∪wn).

P (w1 ∪ w2 ∪ w3 ∪ ... ∪ wn) =
n∑

k=1

P (wk)−
∑
j 6=k

P (wj ∩ wk) +
∑

i 6=j 6=k

P (wi ∩ wj ∩ wk)− ...
(1)

This is called the inclusion-exclusion principle. To calculate the probability that
event 1 or event 2 or event 3, etc... will occur, you add the probabilities of the
individual events, then subtract the probabilities that any 2 of them both hap-
pen, then add the probabilities that any 3 of them all happen, and so on.∗

The probability of a particular number being in the correct slot is 1 in n. This
is because given a number, there are n slots which are equally likely for it to be
in. The probability of 2 numbers being in the correct slots is 1

n ·
1

n−1 . This is
because there’s a 1 in n chance of the first number being in the right slot, and
there are only n− 1 slots for the second number to choose from.

Extending this reasoning we see:

P (wk) =
1

n

P (wj ∩ wk) =
1

n(n− 1)

P (wi ∩ wj ∩ wk) =
1

n(n− 1)(n− 2)

...

P (m different wk events occurring) =
(n−m)!

n!

(2)

There are n different wk events.
There are n(n−1)

2! different events of the form wj ∩ wk.
In general, there are

(
n
k

)
possible ways to choose k different events from a set of

∗Refer to Appendix A for an explanation and proof of the inclusion-exclusion formula.
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n events. Combining this fact with equations (1) and (2) gives:

P (w1 ∪ w2 ∪ w3 ∪ ... ∪ wn) =

n∑
k=1

(
n

k

)
(n− k)!

n!
· (−1)

k−1
(3)

Since the choose function
(
n
k

)
= n!

k!(n−k!) , we can simplify the above equation:

P (w1 ∪ w2 ∪ w3 ∪ ... ∪ wn) =

n∑
k=1

1

k!
· (−1)

k−1
(4)

Let f(n) = P (w1 ∪ w2 ∪ w3 ∪ ... ∪ wn) = the probability of a winning ticket.
This give us the result:

f(n) =
1

1!
− 1

2!
+

1

3!
− 1

4!
+ ... (5)

2.2 Relation to Euler’s Number

Euler’s number e = 2.718281828... can be defined by the infinite series∗:

ex = 1 +
x

1!
+

x

2!
+

x

3!
+ ... (6)

Plugging in x = −1 we get

e−1 = 1 +
−1

1!
+

(−1)2

2!
+

(−1)3

3!
+ ...

= 1− 1

1!
+

1

2!
− 1

3!
+ ...

(7)

Notice that the first n fractions of e−1 are equal to −f(n). Removing the 1
from the beginning of e−1, we have

The first n terms of e−1 − 1 = −f(n)

⇒ f(n) = first n terms of 1− e−1
(8)

Therefore

lim
n→∞

f(n) = 1− 1

e
(9)

2.3 Considering the Clown’s Offer

The clown is willing to pay $1.50 for each winning ticket. Since each ticket costs
$1, this means you win $0.50 for a winning ticket and lose $1 for a losing ticket.

∗See Appendix B for a derivation of Euler’s number and ex.
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Define W as the probability of a winning ticket and L as the probability of a
losing ticket. The expected value of a ticket is

E = 0.50W − 1L (10)

We want to solve for W and L such that E > 0. Notice that W +L = 1 because
the only possibilities are winning and losing. Therefore L = 1−W . Substituting
into E we get:

E = 0.50W − (1−W ) =
W

2
− 1 + W =

3W

2
− 1 (11)

E > 0⇒ 3W

2
− 1 > 0⇒W >

2

3
≈ 0.6667 (12)

Therefore the probability of a winning ticket needs to be greater than 2
3 for the

offer to be worth considering.

We need to calculate f(100), the probability of a random ticket with 100 slots
being a winning ticket. From equation (9) we know that the probability of a
winning ticket f(n) approaches 1− 1

e as n (the number of slots) grows.

f(n) ≈ 1− 1

e
≈ 1− 1

2.71828
≈ 0.6321 <

2

3
(13)

As n grows larger, the probability converges to a number less than 0.6667.
Consider f(n) for various values:

f(1) =
1

1!
= 1

f(2) =
1

1!
− 1

2!
= 0.5

f(3) =
1

1!
− 1

2!
+

1

3!
≈ 0.6667

f(4) =
1

1!
− 1

2!
+

1

3!
− 1

4!
= 0.625

f(5) =
1

1!
− 1

2!
+

1

3!
− 1

4!
+

1

5!
≈ 0.6333

f(6) =
1

1!
− 1

2!
+

1

3!
− 1

4!
+

1

5!
− 1

6!
≈ 0.6319

f(7) =
1

1!
− 1

2!
+

1

3!
− 1

4!
+

1

5!
− 1

6!
+

1

7!
≈ 0.6321

f(8) =
1

1!
− 1

2!
+

1

3!
− 1

4!
+

1

5!
− 1

6!
+

1

7!
− 1

8!
≈ 0.6321

(14)

You can see that the probability converges to 0.6321.... So the expected value of
each ticket is negative. Therefore it would be a mistake to accept the seemingly
trustworthy ex-carnival clown’s offer.
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2.4 Consequences of the Clown’s Offer

If you did accept the clown’s offer, then using equation (11) we see that you
would make around 3

2 · (0.6321)− 1 dollars per ticket.

$[
3

2
· (0.6321)− 1] ≈ −$0.05185 (15)

You would on average lose around 5 cents per tickets. If you accepted the offer
of 1 million tickets, then you would lose about $51,850.

But thanks to math, you were able to avoid that disastrous outcome!

2.5 Computer Simulation

In the interest of verifying the answer, I wrote a simple Python program to
simulate The Clown Lottery scenario:

import random

def IsWinning(theList):

for anIndex, anElem in enumerate(theList):

if anElem==anIndex:

return True

aMoney = 0.0

aList = range(100)

for i in xrange(1000000):

random.shuffle(aList)

if IsWinning(aList): aMoney += 0.5

else: aMoney -= 1.0

print aMoney

Running the program 5 times produced the following results: -$52,073.50, -$51,589,
-$51,178, -$52,891, -$52,676.

2.6 Discussion

I find it counter-intuitive that if you were to pick 100 numbers at random (or
1 million numbers or 1 trillion numbers), the chances are greater than 1

3 that
none of them would be equal to the order that they were picked in. But nobody
I’ve asked has thought it was a good idea to accept the seemingly trustworthy
ex-carnival clown’s offer. Another win for street smarts!

The original way I’ve seen this problem described is in terms of letters and
envelopes. Imagine you have N envelopes addressed to N different people. If
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you placed the letters in the envelopes at random, then what are the chances
that none of the letters went in the right envelope?

Does it seem intuitive that there’s over a 1
3 chance that none of the letters

will go in the correct envelope? Even if there were 1 million envelopes?

Whatever the case, I’m certain that everybody can agree that I made the prob-
lem more relevant to the age that we live in.

3 Formal Proof

In order to present a more formal proof of the solution, it will be helpful to
define the following terms:

n-ticket = a ticket with n slots containing the numbers 1..n

correct slot = a slot which contains a number equal to its position

winning ticket = a ticket with at least one correct slot

f(n) = the probability of a winning n-ticket

g(n) = the number of unique winning n-tickets

Tn = the set of all n-tickets

Wn = the set of all winning n-tickets

Sk
n = the set of all n-tickets where the kth slot is correct

Sn = the set of all of the Sk
n sets

k-intersection = the intersection of k different sets

Ck
n = the set of all possible k-intersections of sets in Sn

3.1 Explanation of Tn and Wn

The Tn set represents the set of all possible tickets with n slots. This is not
to be confused with the 1 million tickets the clown is offering you. Tn contains
every possible unique ticket you could make with n numbers.

To construct Wn, you’d go through all of the tickets in Tn and set aside any
that had one or more numbers in the correct slot. These would be the tickets
that should go in Wn.

3.2 Explanation of Sk
n

To get a better idea of what the Sk
n sets represent, let’s consider S42

100. This is
the set of all lottery tickets with 100 slots that have the number 42 in the 42nd

slot. If you wanted to make this set in real life, then you’d go through all of the
tickets in T100 and set aside the ones that had 42 in the correct slot.
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Now let’s consider S7
100. You’d make this set in a similar way to S42

100. Go
through all of the tickets in T100 and put aside the ones with 7 in the correct
slot.

Here’s an important question. Can S7
100 and S42

100 contain some of the same
tickets? Yes! They contain many of the same tickets. There are tons of tickets
that have both 7 and 42 in the correct slots.

3.3 Explanation of Sn

Here’s where things start to get a little dicey – introducing sets that contain
other sets! All I can do is apologize and then try to explain.

Sn is a set that contains sets as its elements. Think of it as a box containing a
bunch of boxes which each contain lottery tickets.

Let’s look at how you’d make S10 in real life.

First you’d create 10 copies of T10. From the first copy you’d construct S1
10

by finding all of the tickets with the number 1 in the first slot. Then you’d go
through the next copy and construct S2

10 by finding all of the tickets with the
number 2 in the second slot. And you’d continue to do this in order to construct
the other sets with the 3-10 in the correct slots.

Now you have 10 sets, each one containing all the possible tickets that have a
particular number in the correct slot. Imagine you’ve put all the tickets for each
set in a different box. Now place those 10 boxes in a bigger box. That bigger
box is the S10 set.

3.4 Explanation of k-intersections

Ok. What the heck is a k-interection? This is probably the worst of all my
definitions.

First let me explain what a set intersection is. The intersection of two sets A
and B is another set containing the elements that A and B have in common.
This intersection is written as A ∩B.

Let’s consider the example from above of S7
100 and S42

100.

What is S7
100 ∩ S42

100?

It’s a set containing all of the lottery tickets that have both 7 and 42 in the
correct slots.
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Now what is a k-intersection? It’s a set produced from intersecting k different
sets. Call the sets A1, A2, A3, ..., Ak. The new set is A1 ∩A2 ∩A3 ∩ ... ∩Ak. It
contains only the elements that A1, A2, A3, ..., Ak all have in common.

What would we call S7
100 ∩ S42

100? It’s a 2-intersection. It only contains lottery
tickets with a 7 in the seventh slot and a 42 in the 42nd slot.

3.5 Explanation of Ck
n

Ck
n is tied for the worst of my definitions. Unfortunately, the whole solution

hinges on this concept.

Ck
n is another set of sets like Sn.

Let’s look at the example of C3
5. The definition says that C3

5 is the set of all
possible 3-intersections of sets in S5

The way you would construct C3
5 is you’d take every combination of groups of

3 sets from S5 and you’d intersect them. Each of these 3-intersections would be
a set in C3

5.

Specifically C3
5 would contain the following 10 sets:

S1
5 ∩ S2

5 ∩ S3
5 , S1

5 ∩ S2
5 ∩ S4

5 , S1
5 ∩ S2

5 ∩ S5
5

S1
5 ∩ S3

5 ∩ S4
5 , S1

5 ∩ S3
5 ∩ S5

5 , S1
5 ∩ S4

5 ∩ S5
5

S2
5 ∩ S3

5 ∩ S4
5 , S2

5 ∩ S3
5 ∩ S5

5 , S2
5 ∩ S4

5 ∩ S5
5

S3
5 ∩ S4

5 ∩ S5
5

Think of C3
5 as a box that contains 10 boxes of lottery tickets. One box has all

the tickets where slots 1,2, and 3 are correct. One box has the tickets where
slots 1,2, and 4 correct. And so forth.

It’s important to realize that the same ticket can be contained in multiple boxes.
For instance the ticket {1,2,3,4,5} is in every one of the above 10 boxes.

3.6 Conclusion

Finally, we can start solving the problem! The key to solving a math problem
is often in coming up with good definitions.
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4 Solution Using Set Theory

Notice that the probability of receiving a winning ticket is simply the number
of winning tickets divided by the total number of tickets.∗

f(n) =
g(n)

|Tn|
(16)

The number of n-tickets is n factorial.†

|Tn| = n! (17)

The number of winning n-tickets is

g(n) = |Wn| (18)

Notice that Wn is just the union‡ of all the sets of n-tickets which have either
the 1st slot correct, the 2nd slot correct, the 3rd slot correct, etc...

Wn =

n⋃
k=1

Sk
n (19)

Now here is the key to the entire problem. We want to calculate the size of Wn.
How many possible winning tickets are there?

|Wn| = |
n⋃

k=1

Sk
n| (20)

Rewriting this in terms of Sn gives

|Wn| = |
⋃

A∈Sn

A| (21)

How do we calculate the size of a union of sets? The inclusion-exclusion principle
gives us a formula for determinig the size of a union of sets. Refer to Appendix
A for an explanation and proof of the formula.

∗|B| denotes the number of elements contained in the set B.
†To see why the number of tickets is n!, imagine how you could construct all of the tickets.

For the first slot there would be n possibilities. For each of those n starting possibilities, there
would be n− 1 remaining possibilities since the numbers aren’t allowed to repeat. For each of
those n · (n− 1) tickets with the first two numbers selected, there would be n− 2 remaining
numbers to choose from. This would give n(n− 1)(n− 2) possible tickets with the first three
numbers filled in. Extending this process to fill in all of the slots you find that there are
n(n− 1)(n− 2)...3 · 2 · 1 possible tickets which is n factorial.
‡The union of two sets A∪B is a set which contains all of the elements in A and B. Note

that sets never contain duplicate elements. They can only contain at most one copy of each
distinct item. In this case, lottery tickets.
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Applying the inclusion-exclusion principle to equation (21) gives

|
⋃

A∈Sn

A| =
∑
A∈Sn

|A| −
∑
A∈C2

n

|A|+
∑
A∈C3

n

|A| −
∑
A∈C4

n

|A|+ ... (22)

Notice that Sn = C1
n. This is because the set of 1-intersections from Sn is simply

all of the Sk
n sets. So we can rewrite the equation

|
⋃

A∈Sn

A| =
n∑

k=1

∑
A∈Ck

n

|A| · (−1)k−1 (23)

Each set in Ck
n contains tickets where k specific slots are correct. The number

of tickets with k specific correct slots is (n− k)! ∗

∀A ∈ Ck
n : |A| = (n− k)! (24)

The number of sets in each Ck
n is

(
n
k

)
. † This is because Ck

n consists of all of
the possible k-intersections from Sn. To construct all of the k-intersections, you
must choose every combination of k sets from the n sets contained in Sn.

∀k : |Ck
n| =

(
n

k

)
(25)

Using these two results and the fact that g(n) = |
⋃

A∈Sn A| ‡ we can rewrite
equation (23) as follows

g(n) =

n∑
k=1

(
n

k

)
(n− k)! · (−1)k−1 (26)

Substituting the formula for
(
n
k

)
we get

g(n) =

n∑
k=1

n!

k!(n− k)!
(n− k)! · (−1)k−1 (27)

Cancelling out the (n− k)! gives

g(n) =

n∑
k=1

n!

k!
· (−1)k−1 (28)

∗Once you choose the k correct slots, there are (n− k) slots left which can be arranged in
(n− k)! ways.
†The choose function

(n
k

)
specifies how many different sets of k elements can made from

a bigger set of n elements.
(n
k

)
=

n(n−1)(n−2)...(n−k+1)
k!

= n!
k!(n−k)!

To see why this is true, consider picking the first element. There are n choices. For the second
element there are n − 1 choices. Keep picking until you’ve picked k elements. Since you’re
constructing a set, the order in which you picked the elements doesn’t matter. There are k!
ways to represent a list of k elements. Therefore divide by k! to remove the duplicates.
‡see equations (18) and (21)
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Factoring the n! out of the sum gives

g(n) = n!

n∑
k=1

(−1)k−1

k!
(29)

Remember that f(n) = g(n)
|Tn| = g(n)

n! . Substituting g(n) into this equation and

cancelling the n! gives

f(n) =

n∑
k=1

(−1)k−1

k!
(30)

5 Recursive Solution

Here’s a completely different way to solve the problem using a recursive defini-
tion of g(n).

5.1 Reasoning about the first slot

Recall that g(n) = the number of unique winning n-tickets.

Let’s think of how we’d calculate g(n) by imagining how many winning tickets
begin with the numbers 1, 2, 3, ..., n.

There are (n−1)! winning n-tickets that begin with a 1. That’s because the 1 is
in the correct slot, so you can arrange the other n−1 numbers however you want.

How many winning tickets begin with a 2? Consider the function:

h(n) = number of winning n-tickets where one of the numbers is never correct

When the 2 is in the first slot, it can never cause a winning ticket. So we want
to know how many winning tickets there are with the remaining n−1 numbers.
Think of those remaining numbers as forming an (n− 1)-ticket. The 1 is one of
those numbers, and it can never go in its proper slot. Therefore those remaining
numbers can form h(n− 1) winning tickets. So the number of winning n-tickets
with a 2 in the first slot is h(n− 1).

This reasoning holds when any of the numbers 2, 3, 4, ...n is in the first slot.
Therefore:

The number of winning n-tickets that begin with a 2 = h(n− 1)

The number of winning n-tickets that begin with a 3 = h(n− 1)

The number of winning n-tickets that begin with a 4 = h(n− 1)

...

The number of winning n-tickets that begin with an n = h(n− 1)
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Now we can write g(n) in terms of h(n) because we know how many winning
tickets start with a 1, 2, 3, 4, ...n. This represents all of the winning tickets.

g(n) = (n− 1)! + (n− 1)h(n− 1) (31)

5.2 Figuring out h(n)

How do we calculate h(n)?

Think about the tickets we’re considering. We’re considering tickets with n
slots but only n− 1 numbers that can be correct. Imagine that the tickets have
the numbers 2..n and the number 0. The zero doesn’t belong in any of the slots.
It doesn’t ever cause a winning ticket.

There are two cases we need to think about:

• The 0 is in the first slot.

• The 0 is in any other slot.

When the 0 is in the first slot, you can think of the ticket as an (n− 1)-ticket.
The 0 doesn’t contribute to any wins, but all of the other numbers can fit prop-
erly. Therefore there are g(n− 1) winning tickets with a 0 in the first slot.

When the 0 isn’t in the first slot, then there’s either a 2, 3, 4, ..., or n in the
first slot. In each of these cases, we have an incorrect number in front and n−1
numbers remaining. One of those numbers is the 0 which doesn’t have a match-
ing slot. Therefore there are h(n − 1) winning tickets with a 2 in front. And
there are h(n − 1) winning tickets with a 3 in front. This holds for all (n − 1)
leading numbers 2, 3, 4, ..., n

Using these two cases, we see that

h(n) = g(n− 1) + (n− 1)h(n− 1) (32)

5.3 Getting rid of h(n)

We’ve computed g(n) and h(n) as follows:

• g(n) = (n− 1)! + (n− 1)h(n− 1)

• h(n) = g(n− 1) + (n− 1)h(n− 1)

Let’s see if we can manipulate these two equations in order to eliminate the h(n).

Notice that the second term, (n − 1)h(n − 1), is the same in both equations.
Therefore to get rid of it, subtract one from the other.

h(n)− g(n) = g(n− 1)− (n− 1)! (33)
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Add g(n) to both sides to get

h(n) = g(n) + g(n− 1)− (n− 1)! (34)

Now plug this formula for h(n) into equation 31 for g(n)

g(n) = (n− 1)! + (n− 1)h(n− 1)

= (n− 1)! + (n− 1)[g(n− 1) + g(n− 2)− (n− 2)!]

Distribute the (n-1)

= (n− 1)! + (n− 1)g(n− 1) + (n− 1)g(n− 2)− (n− 1)(n− 2)!

Combine the (n-1)(n-2)!

= (n− 1)! + (n− 1)g(n− 1) + (n− 1)g(n− 2)− (n− 1)!

Cancel the two (n-1)! terms

= (n− 1)g(n− 1) + (n− 1)g(n− 2)

Factor out the (n− 1) to arrive at this nice equation:

g(n) = (n− 1)
[
g(n− 1) + g(n− 2)

]
(35)

5.4 Finding a non-recursive g(n) - Part 1

Now we have a nice Fibonacci-like definition of g(n). Isn’t that what we wanted?
Not exactly. We wanted to find a recursive function to avoid all of the pain of
reasoning about sets of sets and inclusion-exclusion principles. We still need
to convert this into an expression that lets us easily calculate the probability
function f(n). That’s the actual problem we’re trying to solve: What is the
probability of getting a winning ticket?

Let’s investigate what happens when we plug in the recursive definition of g(n)
into itself. This is a bit of tricky step so I’m going to box important parts to
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help see a pattern.

g(n) = (n− 1)[g(n− 1) + g(n− 2)]

Distribute the (n-1)

= ng(n− 1) −g(n− 1) + (n− 1)g(n− 2)

Expand g(n-1) using the recursive formula

= ng(n− 1)− (n− 2)[g(n− 2) + g(n− 3)] + (n− 1)g(n− 2)

Distribute the (n-2)

= ng(n− 1)− (n− 2)g(n− 2)− (n− 2)g(n− 3) + (n− 1)g(n− 2)

Combine the g(n-2) terms

= ng(n− 1) +g(n− 2)− (n− 2)g(n− 3)

Expand g(n-2) using the recursive formula

= ng(n− 1) + (n− 3)[g(n− 3) + g(n− 4)]− (n− 2)g(n− 3)

Distribute the (n-3)

= ng(n− 1) + (n− 3)g(n− 3) + (n− 3)g(n− 4)− (n− 2)g(n− 3)

Combine the g(n-3) terms

= ng(n− 1) −g(n− 3) + (n− 3)g(n− 4)

Notice that the boxed parts are all of the form

(−1)a ·
[
g(n− a)− (n− a)g(n− a− 1)

]
(36)

Let’s investigate this expression.

Let k(n) =
[
g(n)− ng(n− 1)

]
(37)

k(n) is just equation (36) with a = 0. Let’s investigate expanding the g(n) term.

k(n) = [g(n)− ng(n− 1)]

Expand g(n) using the recursive formula

= (n− 1)g(n− 1) + (n− 1)g(n− 2)− ng(n− 1)

Combine the g(n-1) terms

= −g(n− 1) + (n− 1)g(n− 2)

Factor out the minus sign

= −[g(n− 1)− (n− 1)g(n− 2)]

Therefore we see that

k(n) = −k(n− 1) (38)
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k(n− a) simply flips signs based on the value of a

⇒k(n) = (−1)a · k(n− a) (39)

⇒k(n) = (−1)n−2 · k(n− (n− 2)) (40)

⇒k(n) = (−1)n · k(2) (41)

Let’s calculate k(2). We can use k(2) to find the values for all k(n). In this
calcualtion keep in mind that g(2) = 1 and g(1) = 1. You can calculate these
result using the recursive g(n) formula, but you can also just realize that there’s
1 winning ticket with 1 slot, and there’s 1 winning ticket with 2 slots.

Plugging 2 into equation (37) gives

k(2) = g(2)− 2g(1) (42)

= 1− 2 · 1 (43)

= −1 (44)

Plugging this value of k(2) = −1 back into equation (41) we get

k(n) = (−1)n · k(2) (45)

= (−1)n · (−1) (46)

= (−1)n+1 (47)

Finally, substitute k(n) = (−1)n+1 into equation (37)

k(n) = g(n)− ng(n− 1) (48)

⇒ (−1)n+1 = g(n)− ng(n− 1) (49)

(50)

This leads us to another recursive formula for g(n), but one that only contains
g(n− 1).

g(n) = ng(n− 1) + (−1)n+1 (51)

Just like the equation 35 version of g(n) looks similar to the Fibonacci function,
this equation 51 version of g(n) looks very similar to the recursive definition of
the factorial function.∗

∗I just thought I’d mention that. Not for any particular reason really.
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5.5 Digression - Other ways of finding g(n)

Without going through all of the work of this proof, you could probably guess
equation (51) by investigating small values of g(n). Consider:

g(1) = 1

g(2) = 1

g(3) = 4

g(4) = 15

g(5) = 76

Assume g(n) ≈ n · g(n− 1). We see that

g(1) = 1

g(2) = 1 = 2 · 1− 1

g(3) = 4 = 3 · 1 + 1

g(4) = 15 = 4 · 4− 1

g(5) = 76 = 5 · 15 + 1

Of course hindsight is 20-20. And guessing the equation wouldn’t lead to a proof
unless you could figure out a way of reasoning out why equation (51) is true.
Despite its simplicity, I haven’t seen a way to explain it or prove it except by
this proof or deriving it from equations (29) or (30) from the proof in section 4.

To be honest, this was the first way I found the recursive g(n) formula. I
used equation (30) to derive g(n) as follows:

f(n) =
1

1!
− 1

2!
+

1

3!
− 1

4!
+ ...

⇒f(n) = f(n− 1) +
1

n!
· (−1)n−1

Multiply by n!

⇒n! · f(n) = n! · f(n− 1) +
n!

n!
· (−1)n−1

Note that n! · f(n) = g(n)

⇒g(n) = n! · f(n− 1) + 1 · (−1)n−1

⇒g(n) = n(n− 1)! · f(n− 1) + 1 · (−1)n−1

⇒g(n) = ng(n− 1) + (−1)n−1

5.6 Finding a non-recursive g(n) - Part 2

Imagine we didn’t know the non-recursive version of g(n). How would we go
about finding it? We could look at a particular example of g(n) and try to spot
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a pattern. Consider g(5)

g(5) = 5 · g(4) + 1

= 5 · (4 · g(3)− 1) + 1

= 5 · (4 · (3 · g(2) + 1)− 1) + 1

= 5 · (4 · (3 · (2 · g(1)− 1) + 1)− 1) + 1

= 5 · (4 · (3 · (2 · 1− 1) + 1)− 1) + 1

= 5 · 4 · 3 · 2− 5 · 4 · 3 + 5 · 4− 5 + 1

=
5!

1!
− 5!

2!
+

5!

3!
− 5!

4!
+

5!

5!

This suggests the following formula for g(n).

Hypothesis: g(n) = n!

n∑
k=1

(−1)k−1

k!
(52)

Let’s prove this by induction.

Base case n = 1:

g(1) = 1!
1

1!
= 1 (53)

So the base case is true. Now assume that the hypothesis (equation 52) holds
for n. We want to verify that it holds for n + 1.

g(n + 1) = (n + 1)g(n) + (−1)n

swapping the two terms and plugging in equation (52) for g(n)

= (−1)n + (n + 1)n!

n∑
k=1

(−1)k−1

k!

Combining (n+1)n!

= (−1)n + (n + 1)!

n∑
k=1

(−1)k−1

k!

Multiplying by
(n + 1)!

(n + 1)!

= (−1)n · (n + 1)!

(n + 1)!
+ (n + 1)!

n∑
k=1

(−1)k−1

k!

Rearranging the (−1)n and (n+ 1)!

= (n + 1)! · (−1)n

(n + 1)!
+ (n + 1)!

n∑
k=1

(−1)k−1

k!

Adding the n+1 term to the sum

= (n + 1)!

n+1∑
k=1

(−1)k−1

k!
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So the hypothesis holds for n+1. Therefore, by induction, the hypothesis holds
for all n.

Now that we have g(n), we can find f(n). Since there are n! possible n-tickets,
the probability of a winning ticket is

f(n) =
g(n)

n!
=

n∑
k=1

(−1)k−1

k!
(54)

5.7 Discussion

There you have it. We managed to prove the problem without having to count
sets or reason about probabilities (beyond some simple factorial logic). Was
it easier than the first rigorous proof? I don’t think so. While it didn’t have
the confusing idea of sets of sets and inclusion-exclusion, it did have a lot more
algebraic manipulation as well as inpsection of recursive formulas searching for
ways to transform them.

g(n) = (n− 1)! + (n− 1)h(n− 1) From two recursive functions

h(n) = g(n− 1) + (n− 1)h(n− 1) referring to each other.

g(n) = (n− 1)[g(n− 1) + g(n− 2)] To one function with two g(n)’s.

g(n) = ng(n− 1) + (−1)n−1 To one with one g(n).

g(n) = n!

n∑
k=1

(−1)k−1

k!
And finally the non-recursive version.

And I’m not sure that I would have been able to do it if I didn’t know the
answer I was trying to find ahead of time.
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Appendix A The Inclusion-Exclusion Principle

A.1 The Union of 2 Sets

If we have 2 sets A and B, how do we calculate the size of the union of those
two sets? Do we just add the sizes of each set?

A BA ∩B

|A ∪B| = |A|+ |B| ???

No. If we add the size of the sets then we end up double-counting the elements
that they have in common. We have to subtract the number of common elements
to get the right size. The common elements are represented by the intersection
of A and B: A ∩B which for brevity I’ll refer to as AB.

|A ∪B| = |A|+ |B| − |AB| (55)

A.2 The Union of 3 Sets

The method of inclusion-exclusion demonstrated in equation (55) can be ex-
tended to the union of 3 sets as follows.

Consider |A ∪B ∪ C|

|A ∪B ∪ C| =
|(A ∪B) ∪ C| = Apply equation (55) to |(A ∪B) ∪ C|
|A ∪B|+ |C| − |(A ∪B)C| = Apply equation (55) to |A ∪B|
|A|+ |B| − |AB|+ |C| − |(A ∪B)C| = Distribute the C in |(A ∪B)C|
|A|+ |B| − |AB|+ |C| − |AC ∪BC| = Apply equation (55) to |AC ∪BC|
|A|+ |B| − |AB|+ |C| − (|AC|+ |BC| − |ACBC|) =

|A|+ |B| − |AB|+ |C| − |AC| − |BC|+ |ACBC|

Thus we see:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |AB| − |AC| − |BC|+ |ABC| (56)

This suggests a pattern.
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A.3 The Union of N Sets

Consider the sets A1, A2, A3, ...
Let An = the set of sets containing A1, A2, A3, ..., An.
Let Bk

n = the set of all possible k-intersections of sets from An. ∗ †

Hypothesis:

|
n⋃

k=1

Ak| =
∑
C∈B1

n

|C| −
∑
C∈B2

n

|C|+
∑
C∈B3

n

|C| −
∑
C∈B4

n

|C|+ ... (57)

Combining the sums together:

|
n⋃

k=1

Ak| =
n∑

k=1

∑
C∈Bk

n

|C| · (−1)
k−1

(58)

Let’s prove this hypothesis by induction.

Base case n = 2:

|
2⋃

k=1

Ak| =
2∑

k=1

∑
C∈Bk

2

|C| · (−1)
k−1

(59)

Expanding the union on the left and the sum on the right:

|A1 ∪A2| =
∑
C∈B1

2

|C| −
∑
C∈B2

2

|C| (60)

Expanding the sums on the right:

|A1 ∪A2| = |A1|+ |A2| − |A1A2| (61)

Therefore the base case is true.
Now assume that the hypothesis (equation 58) holds for n sets A1..An.
We want to verify that it holds for n + 1 sets.

Let Dn =

n⋃
k=1

Ak (62)

|Dn| =
n∑

k=1

∑
C∈Bk

n

|C| · (−1)
k−1

(63)

∗See Section 3 for an explanation of k-intersections.
†Technically, Bk

n is a multiset. A multiset is a set that can contain the same elements
multiple times. What’s important is that the k-intersections contained in Bk

n never intersect
the exact same group of sets from An even if some of the intersections give the same result.
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Let’s look what happens when we add An+1 to the mix:

|Dn ∪An+1| = |Dn|+ |An+1| − |Dn ∩An+1| (64)

Expanding Dn we find

|Dn ∩An+1| = |
n⋃

k=1

AkAn+1| (65)

The right side of the equation is the size of the union of n sets. Therefore we
can use the induction hypothesis (equation 58) to see that

|
n⋃

k=1

AkAn+1| =
n∑

k=1

∑
C∈Bk

n

|C ∩An+1| · (−1)
k−1

(66)

Define B∗kn as the set∗ of k-intersections of Bk
n that include An

Substituting B∗kn+1 into the previous equation gives

|
n⋃

k=1

AkAn+1| =
n+1∑
k=2

∑
C∈B∗kn+1

|C| · (−1)
k

(67)

Now using equations (63), (64), and (67)

|Dn∪An+1| =
n∑

k=1

∑
C∈Bk

n

|C| · (−1)
k−1

+ |An+1|−
n+1∑
k=2

∑
C∈B∗kn+1

|C| · (−1)
k

(68)

Distributing the minus on the right gives

|Dn∪An+1| =
n∑

k=1

∑
C∈Bk

n

|C| ·(−1)
k−1

+ |An+1|+
n+1∑
k=2

∑
C∈B∗kn+1

|C| ·(−1)
k−1

(69)

Notice that An+1 is the only set in B∗1n+1.
So we can add An+1 to the sum on the right.

|Dn ∪An+1| =
n∑

k=1

∑
C∈Bk

n

|C| · (−1)
k−1

+

n+1∑
k=1

∑
C∈B∗kn+1

|C| · (−1)
k−1

(70)

Bk
n ∩ B∗kn+1 = ∅ because B∗kn+1 always has An+1 in its intersections and Bk

n

never does.

Bk
n ∪ B∗kn+1 = Bk

n+1 because B∗kn+1 contains the missing An+1 intersections.

∗B∗kn is technically a multiset like Bk
n
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Using the above 2 facts and combining the sums in (equation 70) gives

|Dn ∪An+1| =
n+1∑
k=1

∑
C∈Bk

n+1

|C| · (−1)
k−1

(71)

Expanding Dn gives

|
n+1⋃
k=1

Ak| =
n+1∑
k=1

∑
C∈Bk

n+1

|C| · (−1)
k−1

(72)

So the hypothesis holds for n + 1.

Therefore, by induction, the hypothesis holds for all n. Inclusion-Exclusion
Formula:

|
n⋃

k=1

Ak| =
∑
C∈B1

n

|C| −
∑
C∈B2

n

|C|+
∑
C∈B3

n

|C| −
∑
C∈B4

n

|C|+ ... (73)

A.4 Adding Probabilities

The Inclusion-Exclusion principle can be used to help calculate probabilities.
This is because a probability can be defined in terms of sets. A probability
event is simply a subset of all possible outcomes under consideration.

Let S = the set of all outcomes

Let A = a subset of S

The probability that A occurs is

P (A) =
|A|
|S|

The probability is the number of possibilities that result in A, divided by the
total number of possibilities.

Let’s look at a specific example. Suppose we want to evaluate the probabil-
ity of rolling an even number on a 6-sided die. In this case

S = {1, 2, 3, 4, 5, 6}
A = {2, 4, 6}

Therefore the probability that we roll an even number is

P (A) =
|A|
|S|

=
3

6
=

1

2
(74)
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What if we wanted to calculate the probability that we roll an even number or
that we roll a number less than or equal to 3? In this case we have:

S = {1,2,3,4,5,6} all possibilities

A = {2,4,6} even possibilities

B = {1,2,3} possibilities ≤ 3

So the probability of rolling an even number or a number ≤ 3 is

P (A ∪B) =
|A ∪B|
|S|

(75)

Calculate |A ∪B| using the inclusion-exclusion principle:

AB = {2, 4, 6} ∩ {1, 2, 3} = {2}
|A| = |{2, 4, 6}| = 3

|B| = |{1, 2, 3}| = 3

|AB| = |{2}| = 1

|A ∪B| = |A|+ |B| − |AB|
|A ∪B| = 3 + 3− 1 = 5

Therefore the probablity that we roll an even number or that we roll a number
less than or equal to 3 is

P (A ∪B) =
|A ∪B|
|S|

=
5

6
(76)

In general,

P (A ∪B) =
|A ∪B|
|S|

=
|A|+ |B| − |AB|

|S|
=
|A|
|S|

+
|B|
|S|
− |AB|
|S|

(77)

Therefore

P (A ∪B) = P (A) + P (B)− P (AB) (78)

For n events we can use the full inclusion-exclusion principle to see that

P (A1 ∪A2 ∪A3 ∪ ... ∪An) =

|A1 ∪A2 ∪A3 ∪ ... ∪An|
|S|

= (Using Equation 73)

∑
C∈B1

n
|C| −

∑
C∈B2

n
|C|+

∑
C∈B3

n
|C| −

∑
C∈B4

n
|C|+ ...

|S|
=

∑
C∈B1

n

|C|
|S|
−
∑
C∈B2

n

|C|
|S|

+
∑
C∈B3

n

|C|
|S|
−
∑
C∈B4

n

|C|
|S|

+ ...
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Because the sets in Bk
n are the k-intersections of {A1, A2, A3, ..., An} we see that

P (A1 ∪A2 ∪A3 ∪ ... ∪An) =
n∑

k=1

P (Ak)−
∑
j 6=k

P (Aj ∩Ak) +
∑

i 6=j 6=k

P (Ai ∩Aj ∩Ak)− ...
(79)

Appendix B Euler’s Number

B.1 Compound Interest

Euler’s number can be defined as

e = lim
n→∞

(1 +
1

n
)n (80)

It was originally discovered in the context of calculating continuous interest.
Suppose a bank pays you 5% interest once per year on your savings of x dollars.
How much money will you have in the account after one year? You’ll have

x + 0.05x = x(1 + 0.05) = 1.05x

How much money will you have after 2 years? You’ll have

1.05x + 0.05(1.05x) = 1.05x(1 + 0.05) = 1.05x(1.05) = x(1.05)2

In general, if you’re payed interest on an amount x, at a rate r, over p periods,
the resulting amount of money in the account will be

my monies = x(1 + r)p

What if instead of receiving interest once per year, you’re payed monthly? Then
the amount of money after one year will be

my monies = x(1 +
r

12
)12

This is because instead of your account growing to x(1 + r) dollars at the end
of the year, your account is growing to x(1 + r

12 ) dollars every month. What if
interest were paid every day? Then at the end of the year you’d have

my monies = x(1 +
r

365
)365

Hopefully, you can see where this is going. What is the maximum amount of
money you could make on interest if the you were paid with infinite granularity?

my monies = lim
n→∞

x(1 +
r

n
)n (81)

Notice that Euler’s number (Equation 80) is the same as Equation 81 with
r = x = 1.
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B.2 Euler’s Function and Infinite Sum

Define Euler’s function as

e(x) = lim
n→∞

(1 +
x

n
)n (82)

What happens if we try to calculate (1 + x
n )n? In general, in order calculate

(a + b)n we use the binomial theorem.∗ The binomial theorm states that

(a + b)n = an +

(
n

1

)
an−1b +

(
n

2

)
an−2b2 + ... +

(
n

n− 1

)
abn−1 + bn

Applying the binomial theorem to Euler’s function we find that

e(x) = lim
n→∞

(1 +
x

n
)n =

lim
n→∞

1 +

(
n

1

)
x

n
+

(
n

2

)
x2

n2
+

(
n

3

)
x3

n3
+ ... =

lim
n→∞

1 +
n

1!

x

n
+

n(n− 1)

2!

x2

n2
+

n(n− 1)(n− 2)

3!

x3

n3
+ ...

(83)

To simplify this sum, we need to figure out the limit of each term as n→∞

lim
n→∞

n(n− 1)(n− 2)...(n− k + 1)

k!

xk

nk
(84)

Notice that

n(n− 1)(n− 2)...(n− k + 1) = nk + c1n
k−1 + c2n

k−2 + ... + ck−1n

for some constants c1, c2, c3, ... that we don’t need to calculate for the purposes
of figuring out the limit.

∗Refer to Append C for an explanation of the binomial theorem.
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Substituting this expression back into equation 84:

lim
n→∞

n(n− 1)(n− 2)...(n− k + 1)

k!

xk

nk

= lim
n→∞

nk + c1n
k−1 + c2n

k−2 + ... + ck−1n

k!

xk

nk

= lim
n→∞

[nk

nk
+

c1n
k−1

nk
+

c2n
k−2

nk
+ ... +

ck−1n

nk

]
(
xk

k!
)

As n→∞, all of the terms but the nk term go to 0

= lim
n→∞

[
nk

nk
](
xk

k!
) = lim

n→∞
(
xk

k!
) =

xk

k!

Therefore

lim
n→∞

n(n− 1)(n− 2)...(n− k + 1)

k!

xk

nk
=

xk

k!
(85)

Substituting equation 85 back into Euler’s function (equation 83), we get

e(x) = lim
n→∞

1 +
n

1!

x

n
+

n(n− 1)

2!

x2

n2
+

n(n− 1)(n− 2)

3!

x3

n3
+ ...

= 1 +
x

1!
+

x2

2!
+

x3

3!
+ ...

Therefore Euler’s function is

e(x) = 1 +
x

1!
+

x2

2!
+

x3

3!
+ ... (86)

We’ve seen that e(1) = e = e1, but how does e(x) relate to ex? Might they be
the same function?∗

B.3 Deriving ex

Here’s how we can show e(x) = ex. We need to use some calculus to do it. I
thought I could avoid all calculus aside from limit calculations, but right here
at the end, I’m at a loss as to how to avoid it.

∗Hint: Yes

26



So let’s try to calculate the derivative∗ of ex.

d

dx
ex = lim

h→0

ex+h − ex

h

= lim
h→0

ex(eh − 1)

h

= ex lim
h→0

eh − 1

h

Substite the formula for e on the right

= ex lim
h→0

(limn→∞(1 + 1
n )n)h − 1

h

Let n =
1

h

= ex lim
h→0

(limh→0(1 + 1
1
h

)
1
h )h − 1

h

= ex lim
h→0

((1 + 1
1
h

)
1
h )h − 1

h

= ex lim
h→0

(1 + 1
1
h

)− 1

h

= ex lim
h→0

(1 + h)− 1

h

= ex lim
h→0

h

h
= ex lim

h→0
1

= ex

The derivative of ex is ex. This is actually one of the most useful properties of
ex.†

d

dx
ex = ex (87)

Now let’s examine the Taylor series expansion‡ of ex. The taylor series expansion
of a function f(x) is

f(x) = f(0) +
f ′(0)x

1!
+

f ′′(0)x2

2!
+

f ′′′(0)x3

3!
(0) + ... (88)

∗The derivative of a function is another function which represents the slope (or rate of
change) of that function
†But I’m not going to write an appendix about it.
‡The Taylor series of a function expresses the function as an infinite polynomial. The idea

is that if the polynomial and all of its derivatives are equal to the function it’s approximating
at a particular point, then it will be equivalent to that function. Note that f ′(x) is another
way to express the derivative of f(x). Similarly, f ′′(x) is the second derivative, etc...
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Since the derivative of ex is ex, then its second derivative is also ex, and, in fact,
all of its derivatives are ex. Therefore the Taylor series for ex is

ex = e0 +
e0x

1!
+

e0x2

2!
+

e0x3

3!
+ ... = 1 +

x

1!
+

x2

2!
+

x3

3!
+ ... (89)

Comparing equation 89 with equation 86 we see that

e(x) = ex (90)

Appendix C The Binomial Theorem

The binomial theorem states:

(a + b)n =

an +

(
n

1

)
an−1b +

(
n

2

)
an−2b2 + ... +

(
n

n− 1

)
abn−1 + bn

(91)

The reasoning behind the theorem is that (a + b)n has n copies of (a + b).

(a + b)n =

n copies︷ ︸︸ ︷
(a + b)(a + b)...(a + b) (92)

Think of the a’s and b’s as a1, a2, ..., an and b1, b2, ..., bn. To multiply the bino-
mials, we need to find the all different ways that we can combine the ai and bi
terms.

The choose function∗
(
n
m

)
calculates the number of ways you can pick m el-

ements from a set of n element.(
n

m

)
=

n!

m!(n−m)!
(93)

There’s only one way that we can pick all the ai’s. Simply choose the ai from
each term.

There are n ways that we can pick n − 1 ai’s. Pick all the ai’s but one. You
can think of this as picking one of the bi’s – the term where you won’t pick the ai.

In general there are
(
n
m

)
ways that we can pick m a’s from the n binomials.

∗Also (not coincidentally) known as the binomial coefficient
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