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1 Problem

N boys go camping one weekend. While in the wilderness, the boys collect a
number of coconuts. They take the coconuts back to their cabin and agree to
divide them up equally before they leave the next morning. That night, one of
the boys wakes up (from excitement) and decides to gather his share of coconuts
right that moment. However, when he counts the coconuts he finds that the
number is not divisible by n, but by giving one coconut to the pet monkey, the
remaining amount is divisible by n, so the boy gives one coconut to the monkey
and takes 1

n of the rest for himself.

Later that night another boy wakes up (also from excitement) and decides to
gather his share of coconuts right that moment (not realizing that the other
boy has already taken his share.) When he counts the number of coconuts he
finds that if he gives one to the pet monkey then the remaining amount will be
divisible by n, so the boy gives one coconut to the monkey (who has already
disposed of the previous one) and takes 1

n of the rest for himself.

Similarly, all of the n−2 other boys awake one by one in the middle of the night
in order to get their share of coconuts, and all of them have to give one coconut
to the monkey before taking 1

n of the rest.

In the morning, as the boys are leaving the cabin, they notice that there are
still some coconuts left. Since each of them has taken their share, they’re not
really sure why there should be any left. Not wanting to think about it too
hard, though, they just decide to split the remaining coconuts evenly since the
remaining amount is exactly divisible by n.

The question, then, is how many coconuts were there to begin with? Give the
minimum possible value.
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2 Solution

Let a equal the starting number of coconuts and nb equal the number of coconuts
left in the morning. Also notice that c− c

n = (c)(n−1
n ) so instead of constantly

subtracting 1
n of the remaining amount from the remaining amount we can

simply multiply the remaining amount by n−1
n . Now let x = n−1

n . This gives
the following equation:

(· · ·(((a− 1)x− 1)x− 1)x · · · −1)x = nb (1)

where we subtract 1 and then multiply by x, n times.

⇒ axn − (x+ x2 + x3 + · · ·+ xn) = nb (2)

Then by adding and subtracting 1 on the left we get:

axn − (1 + x+ x2 + x3 + · · ·+ xn) + 1 = nb (3)

⇒ axn − xn+1 − 1
x− 1

+ 1 = nb (4)

⇒ axn =
xn+1 − 1
x− 1

− 1 + nb (5)

Now substituting back n−1
n for x we get:

a(
n− 1
n

)n =
(n−1
n )n+1 − 1
n−1
n − 1

− 1 + nb (6)

And since n−1
n − 1 = − 1

n , we have:

a(
n− 1
n

)n = −n((
n− 1
n

)n+1 − 1)− 1 + nb (7)

⇒ a(
n− 1
n

)n = n− n(
n− 1
n

)n+1 − 1 + nb (8)

⇒ a(
n− 1
n

)n = −n(
n− 1
n

)n+1 − 1 + n(b+ 1) (9)

Now multiplyling by nn on both sides we get:

a(n− 1)n = −(n− 1)n+1 − nn + nn+1(b+ 1) (10)

Now suppose that we had a pair (a, b) which satisfied (10). Notice then that
(a+tnn+1, b+t(n−1)n) also satisfies the equation since the extra tnn+1(n−1)n

cancels out on both sides. Therefore, valid values of a occur at intervals of tnn+1.
From now on I’ll just write the equation like this:

a(n− 1)n ≡ −(n− 1)n+1 − nn (mod nn+1) (11)
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This is equivalent to writing the exact equation:

a(n− 1)n = −(n− 1)n+1 − nn + tnn+1 (12)

where t is just some integer. This is ok, because in the end if we’re able to get
an equation like this:

a ≡ c (mod nn+1) (13)

then this really means

a = c+ tnn+1 (14)

for some integer t. But remember that valid values of a repeat every nn+1 so
another valid value would be a− tnn+1 which simply equals c.

Also notice the following properties of modular arithmetic. Assume a = b+ ct:

a = b+ ct⇔ a ≡ b (mod c) (15)

ax = bx+ ctx⇔ ax ≡ bx (mod c) (16)

a+ x = b+ x+ ct⇔ a+ x ≡ b+ x (mod c) (17)

So we can add and multiply with integers in a modular equation just as we do
in a normal equation.

Now consider the integer:

y = 1 + n+ n2 + · · ·+ nn (18)

Notice that:

y =
nn+1 − 1
n− 1

(19)

⇒ yn =
cnn+1 + (−1)n

(n− 1)n
(20)

where c is some integer.

Now going back to (11) and multiplying by yn on both sides we get:

a(n− 1)nyn ≡ −(n− 1)n+1yn − nnyn (mod nn+1) (21)

⇒ a(cnn+1 + (−1)n) ≡ −(n− 1)(cnn+1 + (−1)n)− (ny)n (mod nn+1)(22)
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Just lumping the acnn+1 and −(n−1)cnn+1 terms into the generic tnn+1 term,
we get:

a(−1)n ≡ −(n− 1)(−1)n − (ny)n (mod nn+1) (23)

Then by multiplying by (−1)n on both sides and noting that (−1)2n = 1, we
get:

a ≡ −(n− 1)− (ny)n(−1)n (mod nn+1) (24)

⇒ a ≡ (−1)n+1(ny)n − (n− 1) (mod nn+1) (25)

Using the fact that y = 1 + n+ n2 + · · ·+ nn, we have:

ny = n+ n2 + n3 + · · ·+ nn+1 (26)

⇒ (ny)n = (n+ n2 + n3 + · · ·+ nn+1)n (27)

Now since every term of this product must be the result of multiplying n terms
chosen from (n + n2 + n3 + · · · + nn+1), every term of the result must be a
multiple of nn+1 except for the one in which we pick n n’s. So this gives:

(ny)n = nn + dnn+1 (28)

for some integer d.

Now plugging the value for (ny)n back into (25) and lumping the dnn+1 with
the generic tnn+1 term we get:

⇒ a ≡ (−1)n+1nn − (n− 1) (mod nn+1) (29)

⇒ a = (−1)n+1nn − (n− 1) + tnn+1 (30)

Since we can subtract any multiple of nn+1 from a and have another valid result,
just subtract tnn+1 to get:

⇒ a = (−1)n+1nn − (n− 1) (31)

If n is odd then we have our answer. If n is even, then we must add back
one term of nn+1 to the right in order to make a positive. So if n is even then
we get:

a = nn+1 − nn − (n− 1) (32)

⇒ a = nn(n− 1)− (n− 1) (33)

Putting the two cases together we get:

n =
{
nn − (n− 1) n odd
(n− 1)nn − (n− 1) n even
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